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ABSTRACT 

It is proved t ha t  an  irreducible quasif ini te  Woo-modu le  is a h ighes t  or 

lowest weight modu l e  or a modu le  of the  in te rmedia te  series; a un i fo rmly  

bounded  indecomposab le  weight ]4;c~-module is a modu le  of  the  inter-  

media te  series. For a nondegenera te  addi t ive  subg roup  I" of F n ,  where  

F is a field of characteristic zero, there is a simple Lie or associative 
algebra 14~(F,n) (U spanned by differential operators uD'~ ~ . . .  D'~" for 
u E F[I'] (the group algebra), and m i > 0 with )-~i~1 mi > I, where Di 
are degree operators. It is also proved that an indecomposable quasifinite 
weight )a)(F, n)(t)-module is a module of the intermediate series if F is 
not isomorphic to Z. 

1. I n t r o d u c t i o n  

Let us s tar t  with the general definition. For an algebraically closed field IF of 

characterist ic  zero, let F be a n o n d e g e n e r a t e  addit ive subgroup of l ~ ,  i.e., 

it contains an F-basis of F" .  Let F[F] = span{t~[(~ E F} denote  the group 

algebra of F with the algebraic opera t ion  t"  �9 t ~ = t ~+~ for a ,  13 E F. We 

define the d e g r e e  o p e r a t o r s  Di to be the derivations of F[F] de termined by 

Di: t ~ ~+(~it ~ for ~ E F , i =  1 , . . . , n .  Here and below, an element a E F ~ is 

always wri t ten as (~ = ( a l , . . . ,  an) .  The  Lie  a l g e b r a  )5;(P, n) o f  W e y l  t y p e  

* Supported by NSF grant no. 10471091 of China and two grants "Excellent Young 
Teacher Program" and "Trans-Century Training Programme Foundation for tile 
Talents" from the Ministry of Education of China. 
Received March 4, 2004 

223 



224 Y. SU AND B. XIN Isr. J. Math. 

[$4] is a tensor product space of the group algebra F[F] with the polynomial 
algebra F[D1,. . . ,  Dn]: 

(1.1) W(F, n) = F[F] | F[DI , . . . ,  Dn] = span{taD "]a �9 F, It �9 Z~_}, 

n Dt '~ with the Lie bracket: where D" = I-[i=l ~ , 

[C D" ,  t eD  ~] = ( t a D " )  �9 ( t3D ") - ( t ~ D ' )  . ( t~D") ,  

and 

(1.2) 
~ez; 

where fl;~ =- 1-In1 3~i ' (here without confusion, we use notation fl~ similar to 
notation D" in (1.1)), and (~) = 1-L=l "' n (),,). Furthermore, for i , j  E F, (}) = 

i ( i -  1) . . . ( i  - j + 1) / j !  if j e Z+, or (~) = 0 otherwise. 

It is proved [$3] that W(P, n) has a nontrivial universal central extension if 
A 

and only if n = 1. The Lie bracket for the universal central extension W(F, 1) 
of W(F, 1) is defined by 

[t"[D]., t3[D]~] =(t~[D].) �9 (t~[D]~) - ( t 3 [D ] . ) .  (t~[D].) 

( ~ + It 1) C , (1.3) + 5 a ' - 3 ( - 1 ) " g ! v !  klt + v + 

for c~,3 E F C F, it, v E Z+, where [D]~, = D ( D  - 1)-- . (D - i t +  1), and C is 
A 

a central element of W(F, 1). The 2-cocycle of W(Z, 1) corresponding to (1.3) 
seems to appear first in [KP]. 

Denote by W(P,n)O) the Lie subalgebra of W(F,n) spanned by 

{ t~D"]a  6 F, [#l > 1}, where I#] = ~i~1 Iti. Similarly, we can define W(F, 1) (1). 
A 

Then Wl+oo = W(Z, 1) and Woo = W(Z, 1) (1) are the well-known W-infinity al- 

gebras, which arise naturally in various physical theories such as conformal field 

theory, the theory of the quantum Hall effect, etc. and which receive intensive 
studies in the literature (of. [BKLY, FKRW, KL, KR1, KR2, KWY, $4]). 

Note that W(F, n) (1) is also an associative algebra under the product (1.2). 

It can be proved that W(P,n)(1) is simple as a Lie or associative algebra 
(cf. [SZ1]). We denote it by A(F,n) (1) when we consider it as an associative 
algebra. Clearly an A(F, n)(1)-module is also a W(F, n)O)-module, but not nec- 
essarily the converse. Thus it suffices to consider W(F, n)O)-modules. The Lie 

algebra W(F, n)O) = (t~aer W(F, n) (1) is F-graded with the grading space 

(1.4) W(F,n)(~ 1) = span{taD"lit e Z~_\{0}} for a �9 r .  
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In [$4], one of us classified the quasifinite modules over W(F,n).  In this 
paper, we shall consider the more difficult problem of classifying the quasifinite 

modules over W(F, n) (1) . Here, a W(F, n)(1Lmodule V is called a quasifinite 

module  if V = ~ e r  Va is a F-graded F-vector space such that W(F, n)~)V~ C 

Va+~, dim Vs < c~ for a,/~ E F. When we study the representations of Lie alge- 

bras of this kind, since each grading space in (1.4) is still infinite-dimensional, 

the classification of quasifinite modules is thus a nontrivial problem, as pointed 

in [KL]. 

For c~ e F ~, one can define quasifinite W(F,n) (1)- or ~(F,1)(1)-modules 

Aa, Bs as follows: They have basis {yz[/3 E F} such that the central element C 
acts trivially and 

As :(t~D")y~ = (a + 7)"Y~+~, 

B~ :(t~D")y, = (-1)I"I+l(a + fl + 7)"yZ+,, 

for/3, 3' e F, # e Z~\{0} (where (a + 7)" is a notation as ~ in (1.2)). These 

modules are defined in [$4, Z]. Obviously, An or B~ is irreducible if and only if 
a ~ F. Clearly An is also an A(F, n)(1)-module, but not Bs. We refer to any 
subquotient module of As or Bs as a modu le  of the  in t e rmed ia t e  series 

(cf. [$4]). Then the main result of the present paper is the following. 

THEOREM 1.1: (i) An irreducible quasifinite module over W(Z, 1) (1) or over 

W~ = W(Z, 1) (1) is a highest or lowest weight module, or a module of the 

intermediate series. 

(ii) An irreducible quasifinite W(F, n) (1)- or W(F, 1)(1)-module is a module 

of the intermediate series if F is not isomorphic to Z. 

Since the complete description of irreducible quasifinite highest weight mod- 

ules was obtained in [KL] and lowest weight modules are dual of highest weight 
modules, Theorem 1.1 and results in [KL] in fact give a complete classification 

of irreducible quasifinite modules. Theorem 1.1 also gives a classification of 

irreducible quasifinite modules over the associative algebras A(F, n) (1). 

The analogous results to the above theorem for affine Lie algebras, the 

Virasoro algebra, higher rank Virasoro algebras and Lie algebras of Weyl type 

or Block type have been obtained in [C, M, $4, $5, $6] (also, cf. [$2]). 

A quasifinite module V is uniformly b o u n d e d  if there exists N _> 0 such 

that dimV~ < N for all/3 E F; it is called a weight modu le  if D1, . . . ,  Dn are 

semi-simple operators on V. 
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THEOREM 1.2: (i) A uniformly bounded indecomposable weight W(Z, 1) (1)- or 

Woo-module is a module of the intermediate series. 

(ii) A quasifinite indecomposable weight W(F, n) (1)- or W(F, n)(1)-module is 

a module of the intermediate series if F is not isomorphic to Z. 

Finally we would like to point out that  although the main result of the present 

paper is similar to that of [$4], one can see below that  the proof is more technical 

than that  of [$4] due to the fact that  the elements t 3 = t3D ~ E F, do not 

appear in W(F, n) (1). 

2. Quas i f in i t e  Woo-modules  

First we prove Theorem 1.1(i) and Theorem 1.2(i). We shall only work on the 

non-central extension case since the proof of the central extension case is similar. 

Now consider the Lie algebra 

W := W(Z, 1) (1) = span{tiDJii E Z , j  e Z+\{0}}. 

In this case D = t d ,  and by (1.4), W = (~)icz Wi is Z-graded with 

Wi = span{tiDJlj E Z+\{0}} = { t iDf(D)i f (D) E F[D]} 

for i E Z. By (1.2), we have 

[tiD f(D),  tJ Dg(D)] 
(2.1) 

= ti+JD((D + j ) f ( D  + j)g(D) - (D + i)g(P + i)f(D)), 

for i, j E Z, f (D) ,  g(D) E F[D]. Also, W has a triangular decomposition W = 

W+ | W0 �9 W_, where in general, for any Z-graded space M, we always use 

notations M+, M_, M0 and M[p,q) to denote the subspaces spanned by elements 

of degree k with k > 0, k <: 0, k = 0 a n d p  _< k < q respectively. Denote 

Vir = ~ i e z  Fti D, which is the (centerless) Virasoro algebra. 

LEMMA 2.1: Let S be a subspace of Wo with finite co-dimension. Given io > O, 

let Mio,s denote the subalgebra of W generated by ti~ D , V~ I D , ti~ D 2 and S. 

Then there exists some integer K > 0 such that W[K,oo) C Mio,s. 

Proof." By the assumption of S, there exists some integer m0 _> 0 such that  for 

all integer m > m0, there exists a polynomial Df(D)  E S with d e g f  = m. We 

shall prove by induction on m the following claim. 
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CLAIM 1: For any m E Z with 1 < m << mo, there exists some integer K m >  

m K m - 1  (where we take I(o = io) such that tkD m E Mio,S for all integers 

k >_ K,~. 

Suppose m = 1. For any integer k Sufficiently large enough, we can write 

k = klio + k2(i0 + 1) for some kl,k2 E Z+\{0},  so tkD can be generated by 

tioD, ti~ i.e., tkD E Mio,s. Thus we can take some integer K1 > io large 

enough to ensure that  the claim holds for m = 1. Suppose 1 < m < mo and 

inductively assume that  the claim holds for m -  1. Take K,~ = mK,~_l  + 

i0. Then for any k > Kin, by (2.1) we have atkD m = [tk- i~176 =_ 

0 (mod Mi,,,s), where a = ((m - 1)io - 2(k - i0)) < 0, i.e., tkD m E Mio,s. Thus 

the claim holds for m. 

Now take K = Kmo. For any integer k > K,  we can now prove by induction on 

m > 1 that  tkD m C Mio,S as follows: If m _< too, this immediately follows from 

Claim 1. Assume that  m > m0. Let f ( D )  be a polynomial of degree m -  1 > m0 

such that  D f ( D )  E S, then by (2.1), kmtkD m =_ [tkD, Dr(D)]  = 0 (mod Mio,s). 

This proves that  W[~:,~) C Mi,),s. 1 

LEMMA 2.2: Assume that V is an irreducible quasifinite W-module  without a 

highest or lowest weight. For any i , j  �9 Z , i  ~ 0 , - 1 ,  the linear map 

tiDIvj ~ ti+tDlvj @ tiD21yj: Vj --+ V~+j ~ Vi+j+l | Vi+j 

is injective. In particular, dim Vj < 2(dim Vo) + dim V1 t'or j �9 Z. 

Proof (cf. [$4]): Being irreducible, V must be a weight module, i.e., there exists 

some a �9 F, such that  

(2.2) --- {v �9 VIDv = + i)v} .  

Say, i > 0 and (VD)vo = (ti+lD)vo = (tiD2)vo = 0 for some 0 r Vo �9 Vj. By 

shifting the grading index of Vj if necessary, we can suppose j = 0. Let S be 

the kernel of the linear map W0 -+ End(V0): D m ~ Dmlvo for m >_ 1. Since 

dim Vo < cr S is a subspace of Wo with finite co-dimension. Then Mi,sVo = 0 

and by Lemma 2.1, we have W[K,~)Vo = 0 for some K > 0. 

For any subspace M of W, we use U(M)  to denote the subspace, which is the 

span of the standard monomials with respect to a basis of M, of the universal 

enveloping algebra of W. Since W = W[1,~) + Wo + W_ + W[I~,~), using the 

PBW theorem and the irreducibility of V, we have 

v = v ( W ) v o  = + 
(2.3) 

= v(wi,, ))V(Wo + W_)vo. 
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Note that  V+ is a W+-module. Let V_~ be the W+-submodule of If+ generated 

by V[0,K). We want to prove that  V+ = V~. 

So let k :> 0 and let x E V+ have degree degx = k. If 0 < k < K,  then by 

definition, x E V~_. Suppose k > K.  Using (2.3), x is a linear combination of 

the form ulxl  with ul E W[1,K), xl E V. Thus the degree degul  of ul satisfies 

1 _< degul  < K,  so 0 < degxl  = k - degul  < k. By inductive hypothesis, 

xl E V'+, and thus x E V[. This proves that  V+ = Vr 

The fact that  V+ = Vr means that  the W+-module V+ is generated by the 

finite dimensional space V[0,K). Choose a basis B of V[0,K). Then for any 

x E B, we have x = U~Vo for some ux E U(W). Regarding ux as a polynomial 

with respect to a basis of W, by induction on the polynomial degree and using 

the formula [W, WlW2] = [W, Wl]W 2 -{-Wl[W, W2] for W E W, wl,w2 E U(W), 
we see that  there exists a positive integer kx > K sufficiently large enough 

such that  [W[k,,~),ux] C U(W)W[K,~). Then from W[K,~)Vo = 0, we have 

W[k~,~)x = [W[k~,~),ux]vo + uxW[k~,~)vo = 0. Take K '  = max{kx[x �9 B}, 

then W[K,,~)V[o,K) = 0 and 

v+ = (w+ ) V o,K ) = u (w+ )  o,K ) = o. 

Since there exists some integer K1 > K '  sufficiently large enough to ensure that  

W+ C W[K,,~) + [W[-K1,0), W[K,,~)], this means that  we have W+V[Kl,oo) = O. 
Now suppose x E V[~-I+K,~ ). Then by (2.3), it is a sum of elements of the form 

UlXl such that  ul E W[1,K). But then Xl has degree degxl  > degx - K _> K1, 

so Xl E V[KI,cr Thus from W+~K~,~) = 0, we have UlXl = O, i.e., x = 0. This 

proves that  V has no degree _> K1 + K.  

Now let K "  be the maximal integer such that  VK,, ~ O. Since Wo is commu- 

tative, there exists a common eigenvector v~o E VK,, for W0. Then v~ is a highest 

weight vector of W, this contradicts the assumption of the lemma. 1 

Theorem 1.1(i) will follow from Theorem 1.2(i) and Lemma 2.2, so it suffices 

to prove Theorem 1.2(i). Thus from now on, we suppose V is a uniformly 

bounded indecomposable weight W-module such that (2.2) holds. 

Regarding V as a weight module over the Virasoro algebra Vir, by [$2], there 

exists some N > 0 such that  dim Vk = N for all k E Z with k + (~ ~ 0, where 

E F is fixed such that  (2.2) holds, and V has only a finite composition factors 

as a Vir-module, and t-lDIvk: Vk --~ Vk-1 is bijective when k > >  0. So, we can 

find a basis Yk = (y~l), . . .  ,y~g)) of Vk such that  

(2.4) ( t - lD)yk = Yk-1 for k > >  0. 
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We shall assume that  N _ 1 since the proof is trivial if N = 0. In the following, 

we always suppose that  k is an integer such that  k > > 0. Assume that  

( t iD)Yk = Yk+iPi,k for some N x N matrices Pi,k and i E Z. 

By (2.2), (2.4) and applying [ t - l D , t i D ]  = (i + 1) t i - lD  to Yk for i ---- 1,2, we 

obtain 

(2.5) P-1,I~ = 1, Po,k = k,  Pl,k = [~]2 + P1, P2,k = [~]3 + 3kP1 + P2, 

for some N • N matrices P1, P2. Here and below, for convenience, we always 

identify a scalar a E F with the corresponding N x N scalar matrix a .  1N when 

the context is clear, where 1N is the N • N identity matrix. We also denote k = 

k + a for k e Z, and in general, we use the no ta t ion  [a] j : a(a + 1 ) . . .  (a + j - 1) 

for a e F, j e Z+ (cf. notation [D]j in (1.3)). By choosing a composition series 

of V regarding as a Vir-module, we can suppose P1,P2 are upper- t r iangular  

matrices. Applying [tD, t2D] = t3D to Yk, by (2.5), we obtain 

(2.6) P3,k = [~]4 + 6[~]2p1 + 4kP2 + P3, 

where P3 = -3(2P1 + p2 _ 2P2) + [P1, P2], and [P~, P2] = P1P2 - P2P1 is the 

usual Lie bracket. Recall that  D = t d .  From this, one has t i+J (d )  j = ti[D]j 

for i E Z , j  E Z+\{0}.  In the following, we shall often use notation d instead 

of D whenever it is convenient. Remember that  d is an operator  of degree - 1 .  

Assume that  

- -  Yk = Y k - i Q i  k for s o m e N x N m a t r i c e s Q i , k a n d i > l .  
dt ' - 

Using [d  (~) i ]  = 0, we obtain that  Qi,k = Qi which does not depend on k. dt ' 
Note that  since ~ = t - l D ,  we have Q1 = 11v by (2.4). 

LEMMA 2 . 3 : P 1 , P 2  and Qi - 1g  are strict upper-triangular matrices for all 

i E 2 Z + + I .  

Proof." So assume that  N > 1. By (2.1) or (1.2), we can deduce that  

( d ~  i-2 2 d  2 d  d i 3 d  d i 

d 2 d 2 d  d i ]]] 
It 3 d ( d - ~ / l l  
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( d ]  ~-4 3 d d d i 5 d d i] 

for i > 1, where in general [a]y is a notat ion similar to [D]y in (1.3) (cf. notat ion 

[a] j in (2.5)). Here and below, we make the convention tha t  if a notion is not 

defined but  technically appears in an expression, we always t reat  it as zero; for 

instance, (d.td)i--2 ____ 0 if i __< 2. Applying these three formulas to Yk, we obtain 

- [ i  + 114Qi-2 = 3 ( P l , k - i + l P l , k - i Q i  -- 2 P l , k - i + l Q i P l , k  + QiP l , k+ lP l , k )  

(2.7) + 2(2i - 1)(P2,k - iQi  - QiP2,k) ,  

0 =Pl ,k - i+2Pl ,k - i+ l  P l , k - i Q i  -- 3P l , k - i+2Pl , k - i+ l  QiPl ,k  

+ 3Pl , k - i+eQiPl , k+lPa ,k  - QiPl ,k+2Pl ,k+lPl ,k  

+ (i - 1)(i - 2) (P3 ,k - iQi  - QiP3,k) 

+ 2(i - 1) (P l , k - i+2(P2 ,k - iQi  - QiP2,k) 

(2.8) -- (P2,k-i+i Qi - QiB2,k+l )Pl ,k) ,  

[i + 116Qi-4 =lO(P2,k - i+2P2,k - iQi  -- 2P2,k-i+2QiP2,k + QiP2,k+2P2,k) 

- 6(i - 4) (P4 ,k - iQi  -- QiP4,k)  

-- 15 (P l , k - i+3(P3 ,k - iQi  - QiP3,k)  

(2.9) - ( P3,k- i+l  Qi - QiPa,k+l )Pl ,k  ), 

for i _> 1. We shall denote by pla,~ b) the (a, b)-entry of the matr ix  Pi,k and the 

like for other matrices. For a given position (a, b) with 1 < b < a < N,  suppose 

inductively we have proved 

(2.10) q~al,bl) = 0 

for all i �9 2 Z + + l  and for al  > a, bl <_ b or al >_ a, bl < b. Now for convenience, 
we denote 

p~b~ ~(a,a) ! _(b,b) (a,b) 
_ _  p(a,a) , b), PJ , PJ , qJ P j , k - -  j,k ' Pj,k = Pj =- P j -~  qj = 

for j �9 Z. Assume tha t  i �9 2 Z + + l .  Using (2.10), by comparing the (a, b)-entries 
in (2.7)-(2.9), we obtain 

! ! ! 
- [ i  + 114qi-2 = (3 (p l , k - i+ lP l , k - i  -- 2Pl ,k- i+lPl ,k  + Pl ,k+lPl ,k)  

(2.11) + 2(2i - 1)(p2,k-i -- P~,k))qi, 

0 = (P l , k - i+2Pl , k - i+ lP l , k - i  3 ! -- P l , k - i+2PLk- i+lPl ,k  
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3 I I I p ,  pl 
nu P L k - i + 2 P L k + l P l , k  -- P l , k+2  1,k4-1 1,k 

+ (i - 1)(i - 2)(p3,k-~ -- P~,k) 

+ 2(i -- 1)(Pl,k-i+2(P~,k-i -- P~,k) 

(2.12) -- (P2,k-i+l -- P~,k+l)P~l,k) )qi, 

2 , l , [i + 116qi-4 = (lO(p2,k-i+2P2,k-i -- P2,k-i+2P2,k + P2,k+2P2,k) 

- -  6(i -- 4)(p4,k-i -- P4,k) -- 15(p l ,k - i+3(P3,k- i  -- P~,k) 

(2.13) - (P3,k-i+l - P~3,k+l)P~,k))qi" 

Applying [t 2d- , t  j+l d__] = ( j  _ 1)t i+2d to y~) for j = 4, 5, since Pl P:  are 
dt dt 

upper-tr iangular  matrices, using (2.5) and (2.6), we obtain 

P5,k [~16 + 15[~,]4pi + 20[~13p2 + 15[~]2p3 + 6kp4 + P5, 
(2.14) 

where 
P4 = -2(24pl  + 12p~ - 18p2 + PIP2), 

P5 = 5( -72pi  - 34p~ +p~  + 48/)2 - 6pip2). 

We have similar formulas for Pj,k,J' ' = 4,5. Applying It 3d, t4~]d = t 0 d  to 

y~b), we obtain the following relation between pl and P2, which is a well-known 

relation for the Virasoro algebra (cf. [$1]): 

(2.15) 8p~ + 4p~ - 6pip2 + p~ = O. 

First we make the following assumption: 

(2.16) q i # O  for s o m e i E 2 Z + + l .  

By replacing i by i + 2 in (2.11), since [i + 3]4 # 0 for i E 2Z+ + 1, we see 

tha t  (2.16) holds for infinite many  i E 2Z+ + 1. For fixed k, we denote by 

f l ( i ) , f 2 ( i ) , f 3 ( i )  the coefficients of qi in (2.11)-(2.13) respectively. They are 

polynomials oll i. Then (2.12) and (2.16) show tha t  f2(i) = 0 for infinite many 

i. Hence ]2(i) = 0 for all i. Using (2.5) and (2.6) in (2.12), it is s traightforward 

to compute tha t  the coefficient of i 4 in f2 ( i )  is Pl - P~. Therefore, p~ = Pl. 

Similarly, (2.11) and (2.13) show tha t  

9( i )  := [i + 114[i - 114f3(i) - [i + 116f1(i - 2)f1(i) 

is zero for all i. It is a little lengthy but  s traightforward to compute tha t  

coefficient o f i  12 in g( i )  is 6pl (using p~ = Pl). Thus Pl = 0. By (2.15), P2 = 0. 
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Thus also p~ = p~ = 0. Then (2.11) becomes [i + 114(qi - q/-2) = 0. From this 

we obtain that  qi = ql for all i E 2Z+ + 1. 

Now we consider two cases: First assume that  b < a. Then ql := q~a,b) = 0 
(recall that  Q1 = 1g). If (2.16) holds, then the above in particular proves that  

qi = ql = 0 for all i E 2Z+ + 1. This contradicts (2.16). Thus (2.16) cannot 

hold for any i, i.e., in this case we have qi = 0 for all i E 2Z+ + 1. 

Next assume that  a = b. Then ql := q~,a) = 1 and so (2.16) holds for at 

least i = 1. Thus the above proves that Pl = P2 = O, qi = ql, i.e., in this case 
_(~,a) Aa,~) -(~,~) A~,a) we have Pl = Pe -- 0 and ~i = ql = 1 for all i E 2Z+ + 1. 

This proves the lemma. | 

Lemma 2.3 shows that  the diagonal elements of Pj,k are [~]j+l for j = 1,2, 

and thus for all j _> 1 since Vir+ is generated by tD, teD. 

LEMMA 2 .4 :P1  =/)2 = 0 and Qi = 1N for all i E 2Z+ + 1. 

Proof: For a given position (a, b) with 1 < a < b < N,  suppose inductively we 

have proved 

(2.17) p~al ,b l )  a~(al ,bl ) (al bl) 
= v2 ---- 0, qi ' ~-- 5al,bl, 

for all i E 2Z+ + 1 and for al > a, bl _< b or al > a, bl < b. Denote now 

p• ~(a,b) _(a,a) (a,a) t (a,b) t a,b), qi = r 
P j , k  ": P j , k  ' PJ : P j  , P j , k  : P j , k  ' P j  = 

for j E Z , i  E 2Z+ + 1, and denote 

/ s jk= (P~k ffj,k) /sj...-: ( ~ t~2) and ( ~ i = (  1 ~i )  
' P j , k  ' ' 0 " 

Then these 2 • 2 matrices commute with each other. By assumption (2.17), we 

see that  (2.7)-(2.9) still hold when we replace all matrices by their corresponding 

matrices with tilde, and we have similar formulas for Pj,k, j = 3, 4, 5 as in (2.6) 

and (2.14) (here now, [/5i, P2] = 0). Since ~)i is invertible, from (2.8), we obtain 

an equation on /si,k. Using (2.5) and (2.6) in this equation, we obtain that  

4[i]3(3/5i -/52) = 0. This shows that/52 = 3/51. Then (2.7) and (2.9) give 

[i § 114~)i-2 ---- [i]2(i 2 - i + 12/5, - 2)Qi, 

[i + 1 1 6 # , - 4  - -  [ i ] 4 ( i  e - 3 / +  30/51  - 

Since ~)i are invertible, the above gives/51 = 0 and so 152 = 0. Then the above 

also gives ~)i = ~)1 = 12 for i E 2 Z + +  1. This proves that (2.17) holds for (a, b). 

Thus we have the lemma. | 
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Thus by Lemma 2.4 and (2.5), Pl,k = [~]2, P2,k = [~]a, Qi = 1, i e 2Z+ + 1, 

are all scalar matrices for k > >  0. By shifting the grading index of Vk if 

necessary, we can suppose that [~]2, [~]3 7~ 0 and (2.4) holds for k _> 0. Applying 

~7 L ~  , ~TJJ ~ to Yo, we obtain that Q~ = 1. Thus by linear 
algebra, Q2 is a diagonalizable matrix. Note that 

is a linear transformation on Vo (recall (1.2) for the product "."), such that  

crYo = [2--]3YoQ2. Thus by re-choosing the basis Yo and re-defining Yk such that  

(2.4) holds for k > 0 (then this change of basis Yk does not effect Pl,k,P2,k, 

Qi, i  E 2Z+ + 1, since they are scalar matrices), we can then suppose Q2 is a 

diagonal matrix (with the diagonal elements of Q2 being +1). 

LEMMA 2.5: For all i, k C Z with k, k + i >_ O, Pi,k is a scalar matrix. 

Proof: Using [tD,t i - lD] = (i - 2)rid and (2.5), by induction on i, we obtain 

Pi,k = [~]i+1 for i _> --1, k >_ 0. Thus assume that i = - i l  _< , 2 ,  k + i _ 0. Let 

j be any integer such that j > il. Applying (j + il)tJ-i~D = [t-i~D, tJD] to 

Yk, we obtain 

(J + il)[k] j-j1+1 = t[klJ+lPJ -i,,k+j - [k - il]J+l P-i~,k. 

By replacing k by k + j and replacing j by 2j, we obtain two other equations 

respectively. From these three equations, one can easily deduce that P-i~,a is a 
scalar matrix. | 

Since W is generated by Vir u{ (d )2} ,  by induction on j ,  one can prove 

(2.19) ( t i+j(d)J)Yk = Yk+~Pi,j,k for some diagonal matrices Pi,j,k, 

and for all i , j , k  E Z with j >__ 1,k , i  + k > O. 

LEMMA 2.6: Denote by V(a) the W-submodule of V generated by y(o a), 
a = 1 . . . .  , N.  Then V(a) is a module of the intermediate series such that 

V' = V(1) + . . .  + V(N)  is a direct sum of W-submodules. 

Proof: Since U(W) = U(W-)U(Wo + W+) and V(a) = U(W)y;  a), by writing 

u ~ U(W) as a sum of Ul ...U~Wl . . .w~ for ui E W- ,  wi E W0 + HI+, using 

(2.19), we obtain by induction on r + s that  dimV(a)k  = 1 for k _> 0. Since 

V(a) is also a Vir-module, by [$2], dim V(a)k = 1 for all k with k + a r 0. 
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Then by (2.5) and the above lemmas, one can prove that V(a) is a subquotient 

module of As or B~, i.e., V(a) is a W-module of the intermediate series (also 

cf. [z]). 
For a = 1 , . . . ,  N, let V'(a)  = V(a)  M Y~i#a V(i) .  Then obviously, V'(a)k = 

{0} for k > 0. Thus we must have V'(a) = {0}. This proves the lemma. I 

Now let V"  = V / W .  Then V" is a finite dimensional trivial module. By 

induction on the number N + dim V ' ,  one obtains that  V is decomposable if 

N > 2. Thus N = 1 and one can further deduce that  V is a module of the 

intermediate series. This proves Theorem 1.20). 

COROLLARY 2.7: Suppose V is a uniformly bounded quasifinite W-module  

satisfying (2.2) and there exists N >_ 1 such that dim Vi = N for all i E Z with 

c~ + i r O. Fix io E Z with ~ + io r 0 and fix a basis Y/o of V/o. Then there exists 

a basis Yk of  Vk for a11 k E Z with ~ + k r 0 such that (tJD)Yio = (a + io)Yio+j 

for all j E Z with c~ + io + j r O. I 

3. Quasifinite W(F,n)(1)-modules 

Since Theorem 1.1(ii) is a special case of Theorem 1.2(ii), we shall prove 

Theorem 1.2(ii) (cf. [$4]). Thus assume that  F is a group not isomorphic to 

Z and V is an indecomposable quasifinite weight W(F, n)(1)-module such that  

there exists some c~ = (31 , . . . ,  c~n) E IF ~ with (cf. (2.2)) 

Y~ = {v E ViDiv  = (~i + fli)v,i = l , . . . , n }  f o r f l E F .  

As the proof in [$4], V is uniformly bounded, and there exists N > 0 such that  

dim V~ = N for all fl E F with c~ + f l r  0. For convenience, we shall now denote 

~ =  #+c~  for all # E ] P .  

By [SZ2], we can suppose that  all elements 7(i) = (51#,... ,5n,i) for i = 

1 , . . . , n  are in F. We denote 7) = t~i= i n  FDi and define an inner product on 

F x 1 9 b y  

n n 

(3.1) (fl, d) = E f l i d i  for fl -- ( f l , , . . . ,  fin) E F, d = E d i D i  E 19. 
i = 1  i = 1  

Then (., .) is n o n d e g e n e r a t e  in the sense that  if (fl, 19) = 0 for some fl E F 

then fl = 0 and if (r ,  d) = 0 for some d E 19 then d = 0. 

By (1.2) and (8.1), we have 

(3.2) [t~d,t~d '] = t~+~((7, d)d' - (fl, d')d) for fl ,7 E F, d,d' E 19. 
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Fix an element 7 e r such that 5 ,hq -7 ( i ) ,Tq -27 ( i )  ~ 0 for i = 1 , . . . , n .  As in 

(2.18), 
ai = (t-2~(i)Di(Di - 1)) �9 (t2~(i)Di)[v~ for i -- 1 , . . .  ,n, 

are diagonalizable operators (note that  (d)24l = t2D( D - 1) and t 3 ~  = t2D 

in (2.18)). Since ai , i  = 1, . . .  ,n, commute with each other, one can choose a 

basis Y~ of V~ such that ai correspond to diagonal matrices. Let ~ E F\{0} 

be any element such that 7 +/~ r 0. We shall define a basis Y~+~ of V~+Z as 

follows: One can choose some d E 13 such that (7, d), (/~, d), (7 + ~, d) ~ 0. Let 

W(I~) = span{ti~dJ[i E Z , j  E ~+\{0}} be a Lie subalgebra of 1iV(F, n) (1), which 

is isomorphic to ~V(Z, 1) O) by (3.2) (cf. [$4]). Denote V(~) = ~ i e z  V~+i~. 

Then V(~3) is a uniformly bounded quasifinite W(~)-module. By Corollary 2.7, 

t~d l v :V~  ~ V~+~ is bijective. We define Ye+~ = (7 +/~, d)- l ( t~d)Y~ �9 

Now as in (2.19), one can prove by induction on [#1 = #1 + "'" + #n that 

( t~D')Y~ = Y~+~P~,~,~ for some diagonal matrices P~,, , ,  and for all ~3,~ 

F ,#  = (#~, . . .  ,#~) ~ Z~\{0} with ~,~ +/3 r 0. Thus as the proof of Lemma 

2.6, we obtain that V must be a module of the intermediate series. This proves 

Theorem 1.2(ii). 
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